Down-regulation of tomato PHYTOL KINASE strongly impairs tocopherol biosynthesis and affects prenyllipid metabolism in an organ-specific manner

نویسندگان

  • Juliana Almeida
  • Mariana da Silva Azevedo
  • Livia Spicher
  • Gaétan Glauser
  • Katharina vom Dorp
  • Luzia Guyer
  • Andrea del Valle Carranza
  • Ramón Asis
  • Amanda Pereira de Souza
  • Marcos Buckeridge
  • Diego Demarco
  • Cécile Bres
  • Christophe Rothan
  • Lázaro Eustáquio Pereira Peres
  • Stefan Hörtensteiner
  • Félix Kessler
  • Peter Dörmann
  • Fernando Carrari
  • Magdalena Rossi
چکیده

Tocopherol, a compound with vitamin E (VTE) activity, is a conserved constituent of the plastidial antioxidant network in photosynthetic organisms. The synthesis of tocopherol involves the condensation of an aromatic head group with an isoprenoid prenyl side chain. The latter, phytyl diphosphate, can be derived from chlorophyll phytol tail recycling, which depends on phytol kinase (VTE5) activity. How plants co-ordinate isoprenoid precursor distribution for supplying biosynthesis of tocopherol and other prenyllipids in different organs is poorly understood. Here, Solanum lycopersicum plants impaired in the expression of two VTE5-like genes identified by phylogenetic analyses, named SlVTE5 and SlFOLK, were characterized. Our data show that while SlFOLK does not affect tocopherol content, the production of this metabolite is >80% dependent on SlVTE5 in tomato, in both leaves and fruits. VTE5 deficiency greatly impacted lipid metabolism, including prenylquinones, carotenoids, and fatty acid phytyl esters. However, the prenyllipid profile greatly differed between source and sink organs, revealing organ-specific metabolic adjustments in tomato. Additionally, VTE5-deficient plants displayed starch accumulation and lower CO2 assimilation in leaves associated with mild yield penalty. Taken together, our results provide valuable insights into the distinct regulation of isoprenoid metabolism in leaves and fruits and also expose the interaction between lipid and carbon metabolism, which results in carbohydrate export blockage in the VTE5-deficient plants, affecting tomato fruit quality.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fruits from ripening impaired, chlorophyll degraded and jasmonate insensitive tomato mutants have altered tocopherol content and composition.

Since isoprenoids are precursors in chlorophyll, carotenoid and tocopherol pathways, the study of their metabolism is of fundamental importance in understanding the regulatory cross-talk that contributes to the nutritional quality of tomato fruits. By means of an integrated analysis of metabolite and gene expression profiles, isoprenoid metabolism was dissected in ripening-impaired (ripening in...

متن کامل

Chlorophyll degradation: the tocopherol biosynthesis-related phytol hydrolase in Arabidopsis seeds is still missing.

Phytyl diphosphate (PDP) is the prenyl precursor for tocopherol biosynthesis. Based on recent genetic evidence, PDP is supplied to the tocopherol biosynthetic pathway primarily by chlorophyll degradation and sequential phytol phosphorylation. Three enzymes of Arabidopsis (Arabidopsis thaliana) are known to be capable of removing the phytol chain from chlorophyll in vitro: chlorophyllase1 (CLH1)...

متن کامل

Phytol from Degradation of Chlorophyll Feeds Biosynthesis of Tocopherols.

Tocopherols, a subclassof tocochromanols that contain a phytol attached to the head group, act as antioxidants to protect lipids from oxidative damage, a particularly important function in chloroplasts and for seed longevity (reviewed in Maeda and DellaPenna, 2007). One pathway for tocopherol biosynthesis involves de novo synthesis from geranylgeranyl-diphosphate; the other pathway uses phytols...

متن کامل

Remobilization of Phytol from Chlorophyll Degradation Is Essential for Tocopherol Synthesis and Growth of Arabidopsis.

Phytol from chlorophyll degradation can be phosphorylated to phytyl-phosphate and phytyl-diphosphate, the substrate for tocopherol (vitamin E) synthesis. A candidate for the phytyl-phosphate kinase from Arabidopsis thaliana (At1g78620) was identified via a phylogeny-based approach. This gene was designated VITAMIN E DEFICIENT6 (VTE6) because the leaves of the Arabidopsis vte6 mutants are tocoph...

متن کامل

The Arabidopsis vitamin E pathway gene5-1 mutant reveals a critical role for phytol kinase in seed tocopherol biosynthesis.

We report the identification and characterization of a low tocopherol Arabidopsis thaliana mutant, vitamin E pathway gene5-1 (vte5-1), with seed tocopherol levels reduced to 20% of the wild type. Map-based identification of the responsible mutation identified a G-->A transition, resulting in the introduction of a stop codon in At5g04490, a previously unannotated gene, which we named VTE5. Compl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 67  شماره 

صفحات  -

تاریخ انتشار 2016